A Tunable Brake for HECT Ubiquitin Ligases.
نویسندگان
چکیده
The HECT E3 ligases ubiquitinate numerous transcription factors and signaling molecules, and their activity must be tightly controlled to prevent cancer, immune disorders, and other diseases. In this study, we have found unexpectedly that peptide linkers tethering WW domains in several HECT family members are key regulatory elements of their catalytic activities. Biochemical, structural, and cellular analyses have revealed that the linkers can lock the HECT domain in an inactive conformation and block the proposed allosteric ubiquitin binding site. Such linker-mediated autoinhibition of the HECT domain can be relieved by linker post-translational modifications, but complete removal of the brake can induce hyperactive autoubiquitination and E3 self destruction. These results clarify the mechanisms of several HECT protein cancer associated mutations and provide a new framework for understanding how HECT ubiquitin ligases must be finely tuned to ensure normal cellular behavior.
منابع مشابه
HECT ubiquitin ligases link viral and cellular PPXY motifs to the vacuolar protein-sorting pathway
Many enveloped viruses exploit the class E vacuolar protein-sorting (VPS) pathway to bud from cells, and use peptide motifs to recruit specific class E VPS factors. Homologous to E6AP COOH terminus (HECT) ubiquitin ligases have been implicated as cofactors for PPXY motif-dependent budding, but precisely which members of this family are responsible, and how they access the VPS pathway is unclear...
متن کاملStructure of the HHARI Catalytic Domain Shows Glimpses of a HECT E3 Ligase
The ubiquitin-signaling pathway utilizes E1 activating, E2 conjugating, and E3 ligase enzymes to sequentially transfer the small modifier protein ubiquitin to a substrate protein. During the last step of this cascade different types of E3 ligases either act as scaffolds to recruit an E2 enzyme and substrate (RING), or form an ubiquitin-thioester intermediate prior to transferring ubiquitin to a...
متن کاملActivity‐Based Probes for HECT E3 Ubiquitin Ligases
Activity-based probes (ABPs) have been used to dissect the biochemical/structural properties and cellular functions of deubiquitinases. However, their utility in studying cysteine-based E3 ubiquitin ligases has been limited. In this study, we evaluate the use of ubiquitin-ABPs (Ub-VME and Ub-PA) and a novel set of E2-Ub-ABPs on a panel of HECT E3 ubiquitin ligases. Our in vitro data show that u...
متن کاملA structural element within the HUWE1 HECT domain modulates self-ubiquitination and substrate ubiquitination activities.
E3 ubiquitin ligases catalyze the final step of ubiquitin conjugation and regulate numerous cellular processes. The HECT class of E3 ubiquitin (Ub) ligases directly transfers Ub from bound E2 enzyme to a myriad of substrates. The catalytic domain of HECT Ub ligases has a bilobal architecture that separates the E2 binding region and catalytic site. An important question regarding HECT domain fun...
متن کاملPeptide and small molecule inhibitors of HECT-type ubiquitin ligases.
The human genome encodes several hundred E3 ubiquitin ligases containing RING domains, and around 28 containing HECT domains. These enzymes catalyze the transfer of ubiquitin from E2 enzyme thioesters to a huge range of substrates and play crucial roles in many cellular functions. This makes them attractive potential therapeutic targets. However, they have proven difficult to inhibit: very few ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular cell
دوره 66 3 شماره
صفحات -
تاریخ انتشار 2017